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It is natural to assume that mathematics is an attempt to discover and describe
facts about mathematical phenomena—much like physics, geology and eco-
nomics are attempts to discover and describe facts about physical, geological
and economic phenomena. But it has proven difficult to say what the mathe-
matical facts are, and to explain how our mathematical practice could reliably
get at such facts."

The challenge is particularly pressing if we assume that our mathematical
theories are largely correct, and that our epistemic capacities are ultimately to
be understood in broadly naturalistic terms. So it is not surprising that each
of these assumptions has been denied.

Some think we have no good reason to take our mathematical beliefs to
be true. Mathematical theorizing can only tell us what things would be like if
our mathematical beliefs were broadly correct. If our mathematical practice
is somehow helpful in inquiry, it is not because of its success at what it sets
out to do. Others think we underestimate our cognitive abilities: perhaps we
should conclude that we have a non-natural faculty of ‘mathematical intuition’
that gives us access to the relevant facts. Others yet think we should hold on to
these assumptions and reject as unreasonable any demand for a ‘philosophical’
explanation of the success of our mathematical practice.”

But one assumption remains unchallenged: that we have mathematical be-
liefs (or at least belief-like attitudes of some kind—supposition, make-believe,
or what have you.’) Few would deny, in other words, that mathematics is an
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Cf. Benacerraf 1973; Field 1982.

Cf. Field 1980, Godel 1947, and Burgess and Rosen 1997, pp. 45-49 (“the question or
challenge is essentially just a demand for a philosophical foundation’ for common sense
and science [...] of the kind that Quine’s naturalized epistemology rejects”), respectively.
Some varieties of fictionalism (e.g. Yablo 2001) don't fall into either of these categories,
but they maintain that mathematical thought should be analyzed in terms of belief-like
attitudes.

One exception seems to be Bishop Berkeley—cf. Berkeley 1732, viI, §14, as well as the
Treatise, $20—and perhaps David Hilbert, on some interpretations. For discussion, see
Detlefsen 2005.
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attempt to discover and describe facts of some kind. My goal in this paper is
to provide a principled way of denying just that.

To accept a mathematical theory, on my view, is not to have a belief about
some subject matter—at least not if we think of beliefs as essentially attempts to
accurately represent some realm of facts. The point of mathematical practice
is not to gather a distinctive kind of ‘mathematical information’ It is rather to
structure logical space in an epistemically useful way. When I accept a mathe-
matical theory, I do not change my view on what the world is like—I do not, to
use a familiar metaphor, rule out a way the world could be.* Instead, I adopt
conceptual resources that allow me to make distinctions between ways things
could be—to structure the space of possibilities in ways conducive to discov-
ering and understanding what the world is like.

My suggestion is similar in spirit to some non-cognitivist views in
metaethics. On these views, to think that cannibalism is wrong is not to
take a stance on what the world is like. Morality is not about getting at the
moral facts—rather, it is about how to live, what to do. Similarly, on my view,
to make a mathematical judgment is not to take a stance on what the world is
like. Mathematics is not about getting at the mathematical facts—rather, it is
about how to structure the space of hypotheses with which we theorize about
the world.

Non-cognitivists often offer their view as the best way of making sense of
the motivating force of moral judgments. But non-cognitivism can also be
seen as a way of dissolving the well-known difficulties of accounting for our
moral practice. As with mathematics, these difficulties arise around what is
perhaps the central question in moral epistemology: how do we come to know
moral facts? The non-cognitivists deny a presupposition of the question, viz.
that our moral practice should be understood as involving a relation between
ourselves and a realm of moral facts.

I seek to reject a similar presupposition in the metaphysics and epistemol-
ogy of mathematics. On my view, what needs to be explained is not how we
can relate to some realm of mathematical facts, nor how our mathematical
practice can reliably reflect what goes on in a far away realm. What we need
is an account of the goals of our mathematical practice that does not make
it a mystery how creatures with our interests and abilities could successfully
engage in it.

My view is thus a form of nonfactualism about mathematical thought, in
the following sense: our mathematical theorizing does not aim to discover a

*  Some think that we cannot fully characterize the contents of the attitudes involved in cog-

nition with sets of possible worlds alone—e.g. Soames 1987. I agree. My proposal is an
attempt to go beyond the possible-world model in order to give a better picture of our
mathematical thought. Cf. fn. 14.



particular sort of fact.” A nonfactualist view about mathematical practice may
seem like a non-starter: mathematics is perhaps the paradigm of a rationally
constrained enterprise. If mathematics is not to be measured up against an
independent domain of facts, how else can we explain the discipline of our
mathematical theorizing?

To be sure, any reasonable account of mathematical thought must explain
how our mathematical theorizing is rationally constrained. But these con-
straints need not arise out of some putative domain of facts that we are trying
to track. As I will suggest, those constraints may instead arise out of our more
general epistemic goals. On my view, we should seek mathematical theories
that allow us to isolate information about the physical world that is conducive
to our knowledge and understanding.

1 PREVIEW

There are two main aspects to our mathematical practice: deducing new claims
and accepting new theories. Most everyday mathematics involves deducing
new claims from previously accepted ones. But when we set forth the axioms
of our theory of arithmetic, we did not deduce them from something else. Nor
was deduction what led to the ‘discovery’ of real numbers, or of permutation
groups. We simply took up some new mathematical structure as an object of
study. We accepted a new theory about this structure.

I want to start by focusing on what we do when we accept a new math-
ematical theory. I will not discuss deduction until §5. Until then, you can
take me to be focusing exclusively on logically omniscient agents. With a log-
ically omniscient being there will be no room for the type of change involved
in discovering a new theorem. But there will be room, I submit, for the type
of change involved in accepting a new theory. It is perfectly coherent to imag-
ine a logically omniscient being who does not know anything about topology.
And when she comes to learn about topology—Dby reading about it in a book,
say—there will be a distinctive change in her cognitive state. That is the type
of change I will focus on until §5.

Of course, a full account of mathematical thought must explain the cogni-
tive accomplishment involved in proving a particular theorem (e.g. that there

> Itis worth reiterating that this is primarily a claim about mathematical thought. Nonfac-

tualism is often characterized as a semantic thesis (as in e.g. Boghossian 1989). But if one
subscribes, as I do, to the view that mental content is prior to linguistic content—a claim
I cannot defend here—the question of whether a particular fragment of language should
be understood in nonfactualist terms is ultimately a question of how best to understand
the relevant mental states. So I think the interesting question is whether or not factualism
about mathematical thought is correct.



are infinitely many primes, or that every set is smaller than its power set). But
it would be a mistake to try to do so in isolation. After all, talk of ‘discovering
that there are infinitely many primes’ only makes sense against the background
of a large body of arithmetical assumptions—a mathematical theory. We first
need an account of what it is to accept a mathematical theory before we can
say what it is to draw a logical consequence from that theory.

Here is what I will do. I will begin ($2) by isolating an important role
that mathematical theorizing plays in our cognitive economy. I will use that
in §3 to build an account of what it is to accept a mathematical theory. I will
show how the account differs from one on which we have mathematical beliefs
in the ordinary sense. This will lead to an account of the cognitive utility of
mathematics, and of how rationality constrains our mathematical theorizing
even if we are not aiming to track some putative domain of facts (§4). I will
turn to the question of deductive reasoning in §5. Before concluding, I will list
what I take to be the most pressing outstanding issues (56).

My goal here is to sketch an alternative to factualist accounts of mathe-
matics. I will not be arguing against factualist accounts directly. In part, this
is because that would take us too far afield. But more importantly, this is be-
cause we can only make a choice between factualism and nonfactualism once
the nonfactualist alternative is on the table. To my knowledge, no such alter-
native has been developed in any detail. I hope to change that here.

2 MATHEMATICS AS A SOURCE OF CONCEPTUAL RESOURCES

What effect does accepting a new mathematical theory have on our cognitive
lives? How is this reflected in our overall mental state?

Here is one uncontroversial, if partial, answer: when we accept a new
mathematical theory we gain conceptual resources. We gain the ability to ar-
ticulate propositions about the concrete world that we would be unable to ar-
ticulate otherwise.®

Consider Newtonian mechanics and the discovery of the calculus, or
Quantum mechanics and the discovery of Hilbert spaces. In each case, non-
trivial amounts of mathematics are necessary to formulate crucial aspects
of the relevant physical theories—theories that make claims about what the
world is like.”

6 . . . .
To be sure, accepting a mathematical theory has broader repercussions in one’s overall

cognitive system. But my hypothesis is that this will all be a consequence of adopting new
conceptual resources.

A particularly clear example is the second law of motion. Without the calculus, the law
couldn’t have been formulated. Cf. Friedman 2001, p.35ff for discussion and other related
examples in the context of what he calls the ‘relativized a priori.



Here is a simpler example:
(1) The number of houses on Elm St is odd.

Whatever your views on number talk, you should agree that (1) tells us some-
thing about the concrete world. It is something that would be true if any of
the following were true:

There is exactly one house on Elm St.
There are exactly three houses on Elm St.

There are exactly five houses on Elm St.

What (1) entails about the concrete world might be expressed by the infinite
disjunction of all of such claims. Of course, we do not (and could not) have
an infinitary language. We are finite beings after all. But with a little bit of
mathematics we are able to learn that there is an odd number of houses on
Elm St.°

Here is a more interesting example.” One of Leonhard Euler’s most well-
known achievements was the solution to the Konigsberg Bridges problem:

(xB)  Isit possible to tour the city of Konigsberg (see Fig. 1) crossing each
of its seven bridges exactly once, and ending at the starting place?

We can reconstruct his solution in two steps. First, he isolated a proposition
about the city—call it Euler’s proposition. Once understood, this proposition
can easily be seen to be true. Second, he proved that Euler’s proposition en-
tailed that the answer to (xB) is no.

I want to focus on the first step. (I will turn to the second step in §5.) It
is a nice illustration of the way in which new mathematical theories improve
our conceptual resources.

Let me first introduce a bit of terminology. Think of a graph as a collection
of points, or vertices, connected to each other by one or more edges—see Fig-
ure 2 for an example.'® A path in a graph is a sequence of vertices and edges,

8 Some nominalists will object to this—see, e.g. Field 1980. They will insist that our mathe-

matical talk is merely shorthand: we could, if we worked hard enough, express everything
we need to express about the concrete world in a finitary non-mathematical language. See
Burgess and Rosen 1997 for discussion of the limitations of these reconstructive programs.
Cf. Pincock 2007.

Formally, we can identify a graph with an ordered triple (V, E, f ), where V and E are the
sets of vertices and edges (respectively), and fis a function assigning to each e € E a two-
membered subset of V, so that f(e) is the set of €’s vertices.
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Figure 1: Konigsberg ca. 1652.

where each edge is between its two vertices. Call a path containing every edge
in the graph exactly once an Euler path. An Euler tour is an Euler path that
starts and ends with the same vertex.

Euler’s first insight was that the solution to (kB) depends essentially on
whether there is an Euler tour in the graph in Fig. 2 (where the edges represent
the bridges, and the vertices the landmasses). He then proceeded to give a

Figure 2: A graph representing the structure of Kénigsberg.

proof of Euler’s theorem: that a graph contains an Euler tour if and only if each
of its vertices is of even valence, where a vertex is of even (resp. odd) valence
iff it is reached by an even (resp. odd) number of edges.

Introducing this small amount of graph theory allowed Euler to isolate a
true proposition about the bridges of Kénigsberg, what I called ‘Euler’s propo-
sition; viz."':

11

I am assuming that (gP) is entirely about the bridges of Konigsberg: it simply claims that



(ep)  The structure of the bridges of Konigsberg is a graph at least one of
whose vertices is of odd valence.

As you can see by looking at Fig. 2, every vertex in the graph representing
Konigsberg and its bridges is of odd valence. In short, (EP) is true. But this
proposition is not just one more truth about the bridges of Konigsberg. It
is one whose connections to other propositions about the bridges are made
apparent because of how it is embedded in the theory of graphs. In particular,
given Euler’s theorem, it follows from (£p) that the answer to (kB) is no. So
we have a solution to the Konigsberg Bridges problem.

3 ACCEPTING A MATHEMATICAL THEORY

Accepting a mathematical theory can provide us with new conceptual re-
sources. But how? In particular, how can it provide us with fruitful conceptual
resources?'?

I suppose the simplest answer is this: because to accept a mathematical
theory is to adopt certain conceptual resources. I will elaborate on this simple
answer to give an account of what it is to accept a mathematical theory. But
before I do that, I need to answer a preliminary question: what is it to adopt
some conceptual resources?

On my view, to adopt new conceptual resources is to make new distinc-
tions among possibilities. Let me explain.

Following Lewis, we can think of the collection of all possibilities as a log-
ical’ space. A believer, on the Lewisian metaphor, is a traveler trying to locate
herself in logical space.”> So we can think of an agent’s belief state as a par-
ticular type of map: possibilities compatible with what she believes are spread
out all over it. Her goal is to find the point on the map where she is located.
When our agent finds out that p, she rules out all those possibilities in which
it is not true that p. She thus comes closer to isolating the point on the map
corresponding to the way things are.**

they are arranged in a particular way (so that there is an isomorphism from the graph
in Fig. 2 to the city of Konigsberg). But nothing hinges on this. If you think (£P) is not
entirely about the concrete world, let ‘Euler’s proposition’ refer to the strongest proposition
about the concrete world that (Ep) entails.

This is a version of the problem of accounting for the applicability of mathematics. See
Steiner 1998, 2005 for discussion.

See, e.g. Lewis 1979a. This metaphor can probably be traced at least back to Wittgenstein,
but it is most clearly associated with F. P. Ramsey—see Ramsey 1931.

I am assuming that beliefs should be analyzed in terms of epistemic possibilities. I think
of these as metaphysically possible worlds, but nothing in what I will say hinges on this.



Some maps are more fine-grained than others. Consider a map that leaves
out small streets, such as Carlisle St. Using that map alone, a traveler cannot
locate herself to the North of Carlisle St, or to the South of Carlisle St. In other
words, the agent cannot use the map to demarcate the region that is North
of Carlisle St but South of Cambridge St (say), from the one that is South of
Carlisle St but North of Hampshire St.

Likewise with beliefs. We can imagine an agent that cannot locate her-
self exactly in the region of logical space in which quarks are tiny, perhaps
because she has never even heard of quarks before. She is thus unable to won-
der whether quarks are tiny: she lacks the conceptual resources to distinguish
worlds in which quarks are tiny from those in which they’re not. It is only
when she acquires the ability to make this distinction—the ability to entertain
the proposition that quarks are tiny—that her map oflogical space can go from
the one in 3(b) to the one in 3(a).*®

(a) A map that makes the distinction (b) A map that does not

Figure 3: Logical space divided by the proposition that quarks are tiny. Think of each point
inside the two rectangles as a possible world. The lines correspond to distinctions between
those worlds that are made by the map. The worlds in the right half of each rectangle are those
in which quarks are tiny.

On this way of thinking, acquiring new conceptual resources can be iden-
tified with being able to make new distinctions among possibilities. And we
can think of the distinctions an agent is able to make as the propositions she
is able to entertain.™®

' Cf. Leuenberger 2004 for this way of thinking about entertainability. For related discus-

sion, see Swanson 2006; Yalcin 2008 and the discussion of ‘digital’ and ‘analog’ represen-
tation in Dretske 1981.

It might seem odd to identify conceptual resources with the ability to entertain some
propositions. Although I cannot argue for this here, one can capture a lot of our talk
of concepts in an apparatus that starts with propositions rather than concepts as its basic
component. Very roughly, the idea is to think of concept possession as a closure condition
that mimics Evans’ (1982) generality constraint: to have the concept F just is a matter of
being such that if one is able to entertain the thought that x is F, one is therefore able to
entertain the thought that y is F for any y one is acquainted with.



Note that one can acquire new conceptual resources without adopting
those resources. Consider an example: if Alice has not heard of quarks, her
map of logical space will not make distinctions that depend on how things
stand with quarks. But even if she comes to acquire the relevant concepts—
even after she acquires the ability to make the distinctions—she may not
actually make them: she may not include those propositions among those
she takes to be worth gathering evidence for. How things stand with quarks
may have no bearing on any question she cares about. So we can represent an
agent’s conceptual resources by the degree of granularity she is able to give to
her map of logical space. Which level of granularity she will give to her work-
ing picture of logical space—those propositions she takes to be worth gathering
evidence for, the space of hypotheses that she appeals to for theorizing about
the world—will depend on whether she thinks those distinctions are worth
making.

I can now give a more fleshed-out formulation of my proposal. Under-
standing a mathematical theory can increase an agent’s conceptual resources.
In coming to understand a mathematical theory, one acquires the ability to
entertain some propositions. In coming to accept a particular mathematical
theory, one comes to adopt the distinctions given by those propositions for
the purposes of theorizing. To accept a new mathematical theory is thus to in-
crease the granularity of one’s working picture of logical space. Unlike coming
to have a belief, accepting a mathematical theory does not involve eliminating
any possibilities. Rather, it involves making new distinctions among possibil-
ities.

To be sure, not all ways of increasing the granularity of one’s picture of log-
ical space correspond to the adoption of a new mathematical theory. When
I first heard about possums, I acquired the ability to make new distinctions
between possibilities—e.g. to distinguish between possibilities in which pos-
sums are pests from those in which they are not. Clearly, such a change in
my picture of logical space does not involve accepting a new mathematical
theory. So we need a principled way of distinguishing the addition of propo-
sitions about possums from those additions that do correspond to adopting a
new mathematical theory.

Here is a natural suggestion. Mathematics allows us to isolate structural
features of physical systems. Mathematics gives us ways of carving up logical
space where worlds sharing a given structural feature are treated as equivalent.
Let me call such propositions structural propositions.

It is a difficult question—for reasons that are independent of my view—
what a structural feature is. It is thus equally difficult to give an account of
structural propositions—structural propositions are those whose truth super-
venes on structural features of the world. I cannot provide such an account
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here. But very roughly, a proposition is a structural proposition if its truth
depends on the way in which the relevant objects and their parts relate to one
another, and not on the identity of the objects themselves.

Some examples might help. An objects shape is a structural feature. A
proposition about the spatial arrangement of some objects is arguably a struc-
tural proposition. In contrast, the proposition that there are possums in New
Zealand is not a structural proposition. For it may be false in a possum-less
world in which creatures that are functionally indistinguishable from possums
are rampant in New Zealand.

Perhaps more controversially, one might think that propositions whose
truth is sensitive to which categorical properties an object has do not count as
a structural propositions.’” Proponents of this view often go on to claim that
science only tells us about structural properties of objects. If this turned out
to be true, it would follow from my view that the relevant propositions require
accepting a substantial amount of mathematics. But that may well be right,
given the pervasive role that mathematics plays in the natural sciences. Note
however that adopting a physical theory goes beyond adopting the resources
provided by that theory: it also involves ruling out those possibilities that are
incompatible with what the theory says about the world.

Recall the Konigsberg example from §2. Euler’s proposition is a structural
proposition. Its truth does not depend on features of the city of Kénigsberg
other than the relationships between the bridges and the landmasses they con-
nect. In particular, it does not depend on which materials the bridges are made
of, nor on which individuals inhabit the city.

It might help to contrast my proposal with other, factualist ones. All par-
ties would agree that there was a change in Euler’s cognitive state when he
discovered graph-theoretic structures. He was now able to see the bridges of
Konigsberg as instantiating a particular graph-theoretic structure. (Figure 4
is a model of this change.'®) According to the realist, there are some (epis-
temic) possibilities that Euler ruled out when he discovered graph theory. (If
the realist thinks that graphs exist necessarily, she will say those possibilities
are ‘metaphysically impossible’) On her view, the change depicted in Fig. 4
was not immediate: it involved first eliminating those possibilities and then

7" See Chalmers 2003; Lewis 2009.

Let me flag something. Figure 4 suggests that the change in Euler’s cognitive state involves
making finer distinctions among possibilities. But it seems intuitively clear that one thing
gained by the introduction of graph theory was the ability to see possible configurations of
the city as having something in common—to abstract away from details of the city. Thus,
it might be natural to think of Euler’s change as involving some sort of coarsening of logical
space. Strictly speaking, as a matter of algebraic fact, any addition of a new proposition to
one€’s picture of logical space will be the result of a refinement, even if the epistemic benefit
comes from the induced coarsening. See §5 for further discussion.

18
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(a) Possible configurations of the city, di-
vided by the proposition that the answer
to (KB) is ‘no.

= 1B
(b) Possibilities further classified according to the graph-theoretic

properties of the bridges. Those in the same cell agree on what the
bridges’ structure is.

Figure 4: Two stages in the overall change of Euler’s cognitive state. After discovering graphs,
Euler acquired the ability to classify possibilities as in (b). Only after being able to classify
possibilities this way did Euler gain the ability to entertain Euler’s proposition.

using the newly acquired beliefs to see the city of Konigsberg as instantiating
the graph in Fig. 2. (A realist need not think that these changes take place
‘one at a time’. The point is that, on her picture, we can conceptually pull them
apart.)

The fictionalist, on the other hand, would perhaps insist that Euler first
learned something about some non-actualized possibilities—in which, con-
trary to fact, our mathematical theories are true. Still, possibilities are being
ruled out according to whether they make true counterfactuals of the form ‘if
the fiction were fact, then p. Euler then used these newly acquired beliefs in
order to see the city of Konigsberg as having the structure of the graph in Fig.
2.

Both the realist’s and the fictionalist’s accounts are thus versions of a three-
stage view. In contrast, on my proposal the change corresponding to the newly
acquired beliefs about graphs does not involve ruling out possibilities of any
kind.*® Rather, it just involves undergoing the change depicted in Fig. 4. (See

¥ Recall that we are only interested in what the change corresponding to the discovery of
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Fig. 5 for a contrast between simplified versions of the story according to each
of these views.)

N N

| |
| |
— " :
| |
| |

(a) A three stage view.

(b) A two stage view

Figure 5: Two contrasting accounts of the change in Euler’s cognitive state. Here, the grayed out
areas correspond to possibilities that have been ruled out. On factualist models, Euler’s change
occurs in three stages. He first proceeds to eliminate some possibilities (those in which there
are no graphs, perhaps), and then puts those new beliefs to use in classifying the different con-
figurations of the bridges. On a nonfactualist model, the change does not involve eliminating
any possibilities.

The distinctions corresponding to differences in the graph-theoretic struc-
ture of the bridges of Konigsberg are not the only ones that can be made with
the introduction of graph theory. We can ascribe a particular graph-theoretic
structure to the bridges of any city we are familiar with. To understand the
theory of graphs is to be able to put a variety of related distinctions to use in
one’s epistemic endeavors, and to be able to draw connections between those
distinctions.

Say that a physical system lends itself to graph-theoretic interpretation if
it has the following features:

« There is an assignment pairing each non-logical expression in the lan-
guage of graph-theory to a property or relation of the right type that
figures in the system; and

« when the language is interpreted so that each non-logical expression is
assigned the corresponding property in the system, the axioms of the
theory of graphs are true.

In other words, a physical system lends itself to graph-theoretic interpre-
tation if it can be seen as an interpretation—in the standard, model-theoretic

graph theory. Euler does of course end up ruling out possibilities in which the answer to
(xB) is yes. Cf §5.
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sense—of the axioms of graph-theory.* In discovering the theory of graphs,
Euler acquired the ability to ascribe graph-theoretic structure to any physical
system that lends itself to a graph-theoretic interpretation. Less precisely,
though more vividly: Euler acquired the ability to see physical systems as
graph-theoretic structures.

This observation can be generalized to many mathematical theories. Con-
sider the gain in conceptual resources when an agent manages to see physical
systems as interpretations of our language of arithmetic:*' to take a simple
example, she acquired the ability to see any group of three pebbles as having
something in common with all and only all groups of 21 + 1 pebbles for any n
(viz. as being a odd number of pebbles).** Similarly, consider the abilities an
agent gains by understanding the calculus: e.g., the ability to see different sets
of data points as being instances of the same function, or as being all generated
by polynomials; the ability to place the claim that a system evolves in a con-
tinuous manner within a larger network of relevant claims about theoretically
interesting properties of the system.

But we need not assume that mathematical theories were developed with
applications in mind. For acquiring the ability to see the bridges of Konigs-
berg as a graph-theoretic structure can be done without having this (or any
other) application in mind. Very roughly, accepting a mathematical theory is
tantamount to acquiring the disposition to apply that theory in suitable cir-
cumstances, whether or not one goes on to do so.

The natural question to ask is whether this proposal can be generalized to
all mathematical theories. This is no doubt a difficult question. A full answer
is beyond the scope of this paper. But in §6 I will briefly sketch what I take to
be a promising path.

4 CONSTRAINTS ON MATHEMATICAL THEORIZING

Our theorizing about the concrete world is constrained by the facts—by what
the world is like. I have proposed that our mathematical theorizing does not
involve a relation between ourselves and a realm of mathematical facts. What
then constraints our mathematical theorizing? How can we evaluate mathe-
matical theories from an epistemic point of view?

** Note that it is straightforward to make room for partial interpretations—not every bit of

the mathematical vocabulary needs to be given a physical interpretation.

Note that for this to happen they need not have had anything like our language of arith-
metic.

More generally, for any mathematical structure and any physical system, we can ask
whether there is a (partial) isomorphism from the mathematical structure to the physical
system. The propositions generated by M will be the closure under Boolean operations of
all propositions of the form ‘S is a physical system isomorphic to M.

21

22
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On my account, to accept a mathematical theory is to modify one’s
working hypothesis space—by making new distinctions, or by abstracting
away from others. In other words, it is to take on a particular way of carving
up logical space for theorizing about the world. Given that good inquiry is
partly a matter of formulating the right hypotheses, one’s epistemnic goals must
constrain which way of carving up possibilities one should adopt—and thus,
which mathematical theories one should adopt.*}

We can say more. Which propositions make up one’s picture of logical
space will constrain which beliefs one will come to have. While different yet
compatible sets of beliefs may not differ in how many truths they contain,
they may differ in other epistemically significant ways. In particular, which
propositions are included in one’s system of beliefs will constrain what kind
of explanations one can provide. This is not a matter of how many truths a
system of beliefs contains: two systems of beliefs that are equally accurate may
differ in the type of explanations they can provide.

Take Putnam’s famous example.** Alice has a small board in front of her
with two holes on it, A and B. A is a circle one inch in diameter; B is a square
one inch in height. She tries to get a cubical peg slightly less than one inch high
to go through each hole. Alice believes that the peg can pass through hole B,
but not through hole A.

Compare two different systems of beliefs that could be Alice’s. One con-
tains a true description of the microphysical structure of the system consisting
of the board and the peg. It also contains a list of the laws of particle mechan-
ics. These, we can suppose, entail that given the microphysical structure of the
system, the peg cannot pass through hole A, but can pass through hole B.

The second system of beliefs takes no stance on what the microphysical
structure of the system is. However, it contains the proposition that the peg
is cube-shaped, the proposition that hole A is round, and the proposition that
hole B is square. These three (true) propositions in turn entail that the peg
cannot pass through hole A, but can pass through hole B.

We can assume that the two systems of beliefs do not differ in any other
significant respect. In particular, they do not differ in how many true proposi-
tions they contain. Yet we know enough to see that the second system of beliefs
is superior to the first in at least one respect: it allows for a better explanation
of why the peg can pass through hole B, but not through hole A.

»  Cf. Bromberger 1966, 1988. Frege makes vivid the importance of drawing new boundaries

in inquiry: “The more fruitful type of definition is a matter of drawing boundary lines that
were not previously given at all. What we shall be able to infer from it, cannot be inspected
in advance; here we are not simply taking out of the box again what we have just putin. The
conclusions we draw from it extend our knowledge [...]” (Frege 1884, $88, my emphasis)

> Putnam 1975.
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This is not to say that the second system of beliefs is better than the first all
things considered. But it should be uncontroversial that there is one pro tanto
reason for preferring it, epistemically, to the first. When evaluating systems
of beliefs, we need to look not only at the accuracy of each system, but also at
which propositions the system includes.

We can return to Euler’s example to illustrate this point as well: the addi-
tion of graph-theoretic resources is a non-trivial cognitive achievement, one
that led to an epistemic improvement in Euler’s system of beliefs. Euler used
Euler’s proposition to explain why one cannot tour the city of Konigsberg by
crossing each of its bridges exactly once. Now, he could have in principle ex-
plained this in terms of the microphysical structure of the city of Konigsberg.
But even for someone with the computational resources to understand that
explanation, the one in terms of Euler’s proposition is better for two closely
related reasons.”

First, the explanation in terms of Euler’s proposition is more general: it
can apply to a wider variety of cases. General explanations tend to be more
satisfactory and thus can be expected to have a high explanatory value.*® This
is why explaining my opening the door by appealing to the claim that someone
knocked on it seems more satisfactory than the explanation that appeals to the
fact that Tom knocked on it.

Second, the explanation in terms of Euler’s proposition manages to ab-
stract away from prima facie irrelevant features of the city of Konigsberg. Ex
ante, we are inclined to think that small changes in the microphysical structure
of the city of Konigsberg would not affect the answer to (xB). Explanations
that rely on what we take to be inessential details are worse than those that do
not. (This is why appealing to beliefs and desires to explain my behavior can
be more satisfying than giving a full account of my brain state.””)

The explanation in terms of Euler’s proposition has these virtues because
Euler’s proposition is a structural proposition. We can expect explanations in
terms of structural propositions to have these explanatory virtues. So if what
we are after is an increase in valuable explanatory resources, it is worth taking
on the expansions that correspond to accepting a mathematical theory.

Now, this does not give us a story about why we have accepted the math-

»  More carefully: it is a better explanation for the particular explanatory task at hand. But

the two features of the explanation in terms of Euler’s propositions that I will go on to
discuss tend to make for good explanations more generally, at least given the kinds of
things we want to explain.

Highly disjunctive explanations may be the exception—so not any way of weakening the
explanans leads to good explanations. It is not clear why.

Cf. Jackson and Pettit 1988. See also Garfinkel 1981; Strevens 2004, and the discussion of
stability in White 2005.
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ematical theories we actually have. But it shows how one can have principled
ways of evaluating distinct expansions of one’s picture of logical space, and
how these can be seen as arising out of our epistemic goals.>® More impor-
tantly, it gives us the beginnings of an explanation of how creatures with goals
and interests like our own could have developed something like our mathe-
matical practice. To have something like our mathematical practice is essen-
tially to have a picture of logical space rich in structural propositions.*® If our
picture of logical space evolved partly by trying to acquire propositions with
high explanatory value, it is not surprising that we came to have something
like our mathematical practice.

Increasing explanatory resources is not the only goal that our mathemat-
ical theories can help us meet. They also allow us to systematize data and
make predictions that would be obscured by irrelevant details. More gener-
ally, mathematical theorizing can sometimes provide us with helpful compu-
tational resources. The example of the bridges of Kénigsberg shows that much.
The discovery of graph theory was crucial for providing an explanation for
why the answer to (kB) is what it is. But it was also crucial for proving that
the answer to (kB) was no. To understand how accepting a mathematical the-
ory can play such a role, we need to say something about the role of deductive
reasoning in mathematics.

5 DEDUCTION

Suppose I am right that to accept a mathematical theory is to add structural
propositions to one’s working picture of logical space. How does deductive
reasoning work on this picture? In particular, what is it to accept a logical
consequence of a theory one accepts?

To answer these questions, I will first introduce an abstract framework
for thinking about deductive reasoning for factual beliefs.>° I will build on
this framework to sketch an account of deductive reasoning for mathematical
thought.

»  In Pérez Carballo 2014 I examine this question in more detail. By placing the discussion

within a general framework of rational dynamics—on which rational epistemic change
involves maximizing expected epistemic utility—I argue that one can make sense of ex-
pansions that are epistemically rational. The key claim is that expansions can lead to epis-
temic states that are more stable, and that epistemic utility maximizers seek to increase
the stability of their epistemic states.

Note that, on my view, mathematics is not a tool we could in principle dispense with if
only we could access those structural propositions ‘directly’, as it were. Thanks here to an
anonymous reviewer.

Cf. Lewis 1982; Powers 1978; Stalnaker 1991, inter alia.
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More often than not, our beliefs are not deductively closed. David Lewis
tells the story of how he used to think that “Nassau Street ran roughly east-
west; that the railroad nearby ran roughly north-south; and that the two were
roughly parallel”** While Lewis did believe all these things, it would be a
stretch to say that he believed their conjunction—an obvious inconsistency in
light of his background beliefs.

Lewis’ proposal was to think of his belief corpus as compartmentalized:
rather than thinking of his actions as governed by one inconsistent body of
beliefs, we should think of them as governed by distinct bodies of beliefs in
different contexts. In some contexts, his actions were guided by the belief that
Nassau St (and the railroad) ran roughly north-south. Perhaps when asked
where north was, while on Nassau St, he would point in a direction parallel to
it. In other contexts, his actions were guided by the belief that the railroad ran
roughly east-west. Perhaps when asked where north was, while on the train,
he would point in a direction perpendicular to the tracks.

The moral is that we should think of all agents who appear to have incon-
sistent beliefs as having distinct consistent fragments that are incompatible
with each other.**

On this view, failures of logical omniscience are due to fragmentation.
Lewis believes that Nassau St runs roughly north-south, that Nassau St and
the railroad run roughly parallel to each other, but he fails to believe that the
railroad runs roughly north-south. He has two fragmented bodies of belief:
one of them includes the proposition that the railroads run roughly north-
south, the other one doesn’t. When railroads are under discussion, the frag-
ment that does not have the railroad tracks running north-south is active. This
fragment gives an answer to the question that is incompatible with the one the
other fragment gives. Thus, we have a case of intuitively inconsistent beliefs.
But we can imagine a small variant of the case, where the fragment activated
for the purposes of discussing railroads in New Jersey is simply undecided as
to whether the railroad runs roughly north-south. The moral is that when an
agent believes p but fails to believe g, even though p implies g, we should model
her belief state by two fragments. According to one of the fragments, p is true;
according to the other, neither p nor its negation is. The point of deductive
inquiry is (partly) to aggregate one’s belief fragments.*3

Lewis 1982, p. 436.

See Stalnaker 1984, ch. 5 for another version of this suggestion.

In light of general results in social choice theory and the theory of judgment aggregation,
it is safe to conclude that there will be no easy answer to how exactly such aggregation
should proceed. (See e.g. List 2008.) But this should not come as a surprise. As Gilbert
Harman has often pointed out, after realizing that p follows from g an agent who believed
p can either come to believe g or instead abandon her belief in p. It is an open question
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This way of thinking about deduction raises a host of difficult questions
that are beyond the scope of this paper.** But it is a promising strategy for
thinking about deductive inquiry that is motivated by a natural way of under-
standing the phenomena. In what follows, I will assume that it is on the right
track. I want to build on this model to give an account of deductive reasoning
in mathematics that is compatible with my proposal.

On the view I favor, fragments can differ not only in what worlds they take
to be possible, but also in how those worlds are carved up—in other words, in
what propositions make up the space of hypotheses of each of the fragments.*>
So fragments can differ not only in what factual beliefs they include, but also in
what mathematical theories they accept—for accepting a mathematical theory
is a matter of carving up logical space in a particular way.

Now, one reason fragmentation is attractive in the case of straightforward
beliefs is that, while each fragment is perfectly consistent, they are in conflict
with each other. An agent who has contradictory beliefs is to some extent de-
fective. Modeling her cognitive state by a fragmented belief system captures a
sense in which her beliefs are somehow defective: the fragments are inconsis-
tent with each other. There is a lack of unity in her picture of the world.

But consider an agent who accepts two inconsistent mathematical theo-
ries. I am suggesting we model her belief state by two fragments: each one
would be partitioned by the conceptual resources generated by one of the the-
ories. Again, an agent who accepts inconsistent mathematical theories is in
some way defective. Yet it is hard to see what conflict there could be between
two fragments that divide the same set of possibilities in different ways. Why
not think of the agent as having one belief system consisting of the given set of
possibilities and containing each of the propositions available at either frag-
ment?3°

Perhaps our agent makes use of distinct hypothesis spaces in diftferent con-
texts. But while this might serve as a motivation for thinking of different par-
titions of logical space as belonging to different fragments, it is not enough to
do justice to the phenomena. When an agent’s descriptive beliefs are incon-
sistent, we are often forced to treat her system of beliefs as fragmented. The
different fragments are in genuine conflict with each other. Assume we posit
fragmentation because our agent uses different hypotheses spaces in different

which option she will take. Cf. Harman 1986 on the distinction between inference and
implication.

In particular, we need to get clear on how fragments are to be individuated.

See Yalcin 2008 on how partition-sensitivity can be used to motivate this model of deduc-
tive reasoning.

This worry is related, although subtly distinct from, the so-called negation problem for
metaethical expressivism. See Dreier 2006; Schroeder 2008 for discussion and references.
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contexts, but suppose both fragments agree on which worlds are possible. Can
we nevertheless claim that the two fragments are in conflict with each other?

One hypothesis is that the conflict arises out of limitations in an agent’s
cognitive resources. Our agent may be unable to incorporate the two parti-
tions into an all-purpose one. But there is a deeper reason why different frag-
ments may be in conflict even when they agree on what worlds are possible.

To see that, let me go back to an aspect of the Konigsberg bridges example
that I set aside in §2. Recall that Euler’s solution could be split in two steps:
first, the introduction of graph-theoretic resources; second, the realization that
the answer to (xB) is no. The second step is where deduction comes in.

Plausibly, Euler already knew that each landmass in the city of Konigsberg
was reached by an odd number of bridges. And this, we now know, entails
that the answer to (kB) is no. So we have a simple case of failure of deductive
closure, one to which we can apply fragmentation.

We can think of the two fragments as in Figure 6. The first is carved up
by the two answers to (kB), and contains possibilities corresponding to each
answer. The second is carved up by the answers to the question: which land-
mass is reached by an even number of bridges? Here, we can assume that the
only answer compatible with Euler’s beliefs is none.

(a) Possible configurations of the city, di- (b) Possibilities classified according to
vided by the proposition that the answer to which landmasses are reached by an even
(kB) is ‘no. number of bridges.

Figure 6: Two fragments of Euler’s cognitive state. The only answer to (kB) compatible with
the fragment in (b) is no, since according to it the proposition that no landmass is reached by
an even number of bridges (the one not grayed out in the figure) is true. The fragment in (a),
in contrast, does not settle (kB).

At first, Euler was unable to use his knowledge about how many land-
masses are reached by an even number of bridges to answer (k). This can
be represented by a fragmented belief state. In this case, different possibilities
are compatible with each fragment. Possibilities in which all landmasses are
reached by an even number of bridges are compatible with one of the frag-
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ments (the one that is carved up by the answers to (kB)), but incompatible
with the other.

But go back to a point before Euler realized that each landmass is reached
by an odd number of bridges. We can assume, to make things simpler, that his
non-mathematical beliefs were deductively closed. He did not know what the
answer to (kB) was, but he also did not know how many bridges reached each
landmass in the city. Nevertheless, I submit, we should model his cognitive
system as fragmented. For he was disposed to have a fragmented belief state:
he was disposed to form the belief that there was an odd number of bridges
reaching each of the landmasses without forming the belief that the answer to
(xB) was no. And this is because he was unable to use evidence that could settle
the questions carving up one fragment—is each landmass reached by an odd
number of bridges?—in order to answer the questions carving up the other—
viz., (kB). He was unable to see how hypotheses from the two fragments relate
to one another.

Deductive reasoning can eliminate inconsistencies in one’s descriptive be-
liefs. But it can also improve one’s information transfer abilities. An agent
whose descriptive beliefs are in conflict with each other hasn't transferred in-
formation from one fragment to another. An agent whose mathematical views
are inconsistent is disposed to be in that situation. This is because she hasn’t
acquired the ability to use evidence settling one question to answer another,
logically related one.

Note that once we model things this way, we can see how the discovery of
graph-theory could have helped with determining that the answer to (xB) is
no. Suppose you could partition logical space in such a way that it was easy
to tell (i) which cell of that partition the actual world belongs to and (ii) what
the answer to (kB) was, given the answer to (i). The coarse partition given by
(xB) itself makes (ii) trivial, but is of no help with (i). The fine partition given
by detailed descriptions of the city might make (i) easy, but not (ii). Euler’s
accomplishment in introducing the theory of graphs was to provide a partition
meeting both (i) and (ii).

Indeed, we can think of this partition as mediating the transition from the
one fragment in Figure 6 to the other. This is the cognitive accomplishment
involved in the proof of Euler’s theorem: connecting the proposition that an
odd number of bridges reaches each landmass in Kénigsberg, through Euler’s
proposition, to the proposition that the answer to (kB) is no. The transition
from the former to Euler’s proposition, and that from Euler’s proposition to the
latter can each be seen as simpler, more immediate ones (cf. Figure 7). Eu-
ler’s lack of logical omniscience was manifested in his inability, before proving
the theorem, to transfer information from the fragment triggered by the ques-
tion ‘how many landmasses are reached by an odd number of bridges?’ to the
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fragment triggered by (xB).

Figure 7: Refinements can be thought of as helping to calibrate two fragments. By arriving at
a common refinement of two fragments, it is easier to see how cells in each fragment relate to
cells in the other.

The interaction between fragmentation and my account of mathematical
thought can thus be used to illuminate the way in which mathematical the-
orizing can increase our computational resources. But it can also be used to
sketch an account of the role of deductive reasoning in mathematical thought.

6 OUTSTANDING ISSUES

Many issues remain outstanding. Here are two of the most pressing ones.

First, is my proposal compatible with a plausible semantics for mathemat-
ical language? To give a full account of mathematical practice we certainly
need to give a compositional semantics for the relevant fragments of our lan-
guage. On my view this needn’t be the first step: a different starting point can
give us a more illuminating theory. Formal semantics is often seen as a neutral
ground on which disputes about the nature of mathematical practice should
take place. But I see no reason why semantics should be the royal road to un-
derstanding our mathematical practice. The complexity of this practice goes
beyond anything that can be explained by giving a semantics for a fragment
of natural language. And focusing on the details of a compositional semantics
might make us lose perspective.

If T am right, the goal of mathematical practice is to arrive at new ways of
carving up logical space. But we engage in inquiry as a community, and we
need to agree on how to carve up logical space in order to communicate with
each other. It would be surprising if we did not have some way of fostering such
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coordination. A language is well-suited to do this: it is a device for expressing
our mental states and trying to arrive at some common state. The difficulty is to
give a detailed story of how our mathematical language could be understood
as playing that role. I suspect that recent work done on nonfactualism—in
particular (Gibbard 1990, 2003)—will be helpful for sketching a semantics for
a fragment of our mathematical language. However, this is a task for some
other time.*’

That said, I should note that there are general reasons for thinking that giv-
ing a semantics compatible with my view will prove much less difficult than
it might seem. On my view, an assignment of semantic values to sentences
places fewer constraints on our theory of the relevant mental states than is
usually supposed. All it tells us is that the algebra one uses to provide the se-
mantics for a language is isomorphic (or determines an algebra that is isomor-
phic) to the algebra one uses to characterize the inferential relations among the
relevant mental states, and the way these states evolve during a conversation.
And the crucial point is that there is more than one way of understanding the
role of the algebra that we use to characterize our mental states.*"

For example, on a conventional interpretation, for a state s to be weaker (in
the sense of the algebra) than state s’ is for the truth-conditional content of s’
to entail the truth-conditional content of s. On my interpretation, in contrast,
for s to be weaker than s is for s’ to deploy richer conceptual resources than s.
The upshot is that we can give a rather non-revisionary semantics, along the
lines I gesture at in the appendix, for the language of mathematics. And we
can do so without assuming that to accept a mathematical theory is to take a
stance on what the world is like.

A second outstanding issue is whether my proposal can be generalized to
deal with mathematical theories that are more abstract—theories involving
large cardinal axioms, say, or theories that seem non-applicable to the natural
sciences. I don’t have an answer to this question, yet. But here is one line of
thought worth exploring. In the same way that accepting ‘lower-level’ math-
ematical theories can be seen as adopting ways of making new distinctions
among ordinary, descriptive propositions, accepting ‘higher-level’ mathemat-
ical theories can be seen as making new distinctions among lower-level the-
ories. We can motivate this strategy by noting that more abstract branches
of mathematics often arise out of reflection on more ‘concrete’ mathematical

37 Ttis not hard to sketch such a semantics based on the notion of scorekeeping, much along

the lines of Lewis 1979b and Stalnaker 1973. The main observation—which I develop in
the appendix—is that we can easily represent the evolution of the part of the score cor-
responding to the partition presupposed by conversational participants as proceeding by
‘elimination’ of alternatives.

38 Cf. Pérez Carballo forthcoming.
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theories. This gives us a hierarchical picture, on which the kind of distinctions
we make at one level will be constrained by the theories we accept at higher
levels.?®

7 CONCLUSION

Most attempts at making sense of our discursive practices proceed in full gen-
erality. They ask what asserting a declarative sentence is, or what judging
that so-and-so amounts to. A less ambitious strategy—favored by metaethical
expressivists—is to leave open the possibility of treating different domains of
discourse differently. The strategy is to ask what it is to make a moral judg-
ment, or a mathematical judgment, not simply what it is to judge that so-and-
so. This is the strategy I have adopted. It would be nice if we could say some-
thing general about all the different aspects of inquiry. Reflection on our dis-
cursive practices suggests that they have much in common. But this is not a
nonnegotiable constraint on the project.

In this paper, I sketched a novel account of mathematical practice. On
this account, to discover a new mathematical theory (or structure) is not to
acquire a new belief. Rather, it is to change the granularity of one’s working
picture of logical space—in other words, to change one’s working hypothesis
space. Discovering a new mathematical theory involves acquiring the ability
to see any possible physical configuration as a potential instance of the theory.

The picture that emerges from my proposal is a form of nonfactualism.
But it is one that can account for the ways in which our concern for the truth
imposes substantial constraints on our mathematical theorizing. For how best
to structure our inquiry into the physical world will depend on what our epis-
temic goals are. This opens the door to an account of the rationality of our
mathematical practice that is compatible with a plausible picture of our cog-
nitive lives.*°

E.g., the axiom of constructibility will rule out certain isomorphism-types from the math-
ematical universe that are available in models of ZFC in which 0 exists. See Maddy 1997,
ch. 6 for discussion.

Thanks to Alex Byrne, Fabrizio Cariani, Tom Dougherty, Paul Egré, Paolo Santorio, Katia
Vavova, and Kenny Walden for many helpful comments and advice. Thanks also to Phil
Bricker, Rachael Briggs, Alexi Burgess, Sylvain Bromberger, Nina Emery, David Hills,
Chris Meacham, Eliot Michaelson, Vann McGee, Dilip Ninan, Eliot Sober, Seth Yalcin,
Roger White, and audiences at the University of Buenos Aires and the Ecole Normale
Supérieure for comments on earlier versions of this material. Special thanks to Agustin
Rayo, Bob Stalnaker, and Steve Yablo.
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A APPENDIX: CONTENT AND SEMANTICS

Distinguish two questions:

(i) What is the functional role of a particular type of mental state?

(i) ~ What is the most perspicuous way of representing those mental states
in a theory of the mind?

I have said something in answer to the first question. But what I have said does
very little to constrain how we should answer the second one. Let me explain.

When I want a break, I am in a particular mental state. We might find it
convenient to explain what that state is by appealing to the functional role it
plays. We might say that it is a state that tends to bring it about that I look for
an excuse to stop working, or that I get up and walk to the water cooler. This is
no doubt a very partial characterization of what state I am in, but we can give
a theory of wants along these lines.

Yet when deciding how to represent wants in our theory of the mind, we
might want to use propositions. We might want to represent my wanting a
break as my being in a particular relation to the proposition that I take a break.
But this is not forced upon us by our account of what wants are. Rather, it is
something we do in order to streamline our theory of the mind. For in assign-
ing propositions as objects of my wants, as we do with beliefs, we can make
useful generalizations about the way in which our wants and beliefs interact
with one another, by looking at the logical relations between the propositions
we assign to them.*'

Sometimes we have additional pressure to represent attitudes as proposi-
tions. Consider attitudes like expectations. We not only expect rain, we also
expect that it will rain. It seems natural to represent the latter state as involv-
ing a relation to a proposition (the proposition that it will rain), and it would
be odd not to do the same with the former.

On my view, mathematical beliefs do not involve ruling out possible
worlds. Rather, they involve taking on the conceptual resources that come
with the relevant mathematical theory. But our mathematical beliefs relate
to one another in much the same way that our ordinary, descriptive beliefs
relate to one another. And our best way of thinking about the way in which
our ordinary, descriptive beliefs relate to one another involves representing
them as relations to propositions. It would be nice, therefore, if we could also

4 'This point is nicely made by David Lewis (1979a, $1): “Our attitudes fit into a causal net-

work. In combination, they cause much of our behavior (...). In attempting to systematize
what we know about the causal roles of attitudes, we find it necessary to refer to the logical
relations among the objects of the attitudes. Those relations will be hard to describe if the
assigned objects are miscellaneous.”
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represent mathematical beliefs using proposition-like objects. For then we
would be able to transfer all we know about our theorizing about ordinary,
descriptive beliefs to our account of mathematical thought.

Fortunately, a simple trick will let us do so.

A.1  Content

Assume for a moment that we can associate with each mathematical structure a
partition of the space of possibilities—i.e., a collection of propositions that are
mutually exclusive and jointly exhaustive. This will correspond to the smallest
set X of propositions such that any proposition that can be entertained given
the conceptual resources the theory provides is a Boolean combination of el-
ements of X. For example, the proposition that describes the graph-theoretic
structure of the city of Konigsberg is one that can be isolated using the graph
in Figure 2—we can, as it were, point to that graph and say that the structure
of the bridges is like that. I will speak of a proposition as being ‘generated by a
structure’ whenever it is one of those built out of the partition associated with
that structure.

Now, we can characterize the state of accepting a mathematical theory with
a set of mathematical structures: those structures such that they each generate
the (structural) propositions that make up our agent’s picture of logical space.
As we will see, we can think of those structures as being precisely what we
normally think of as the models of the theory (in the model-theoretic sense).

If our agent comes to accept a claim that is independent of the theory she
accepts, she will have narrowed down the set of structures that characterize her
mental state—much as in forming a new descriptive belief an agent narrows
down the set of worlds she takes to be possible. Which structures will be ruled
out? Those that don’t allow for the conceptual resources that the new theory
generates.

A picture might help. Take a look at Figure 8, and think of 4, j and k as
standing for different mathematical structures. Each layer in the picture cor-
responds to a different way of partitioning logical space—Q(i) corresponds to
the partition generated by i, and so on. An agent that has not settled on which
of Q(7), Q(j) or Q(k) to take on as her working hypothesis space can be mod-
eled by the set containing 7, j and k. In particular, such a set would model our
agent having adopted p, as part of her hypothesis space, but not yet q nor r.
If she went on to include r as part of her picture of logical space, she could be
modeled as having ruled out i, since it does not generate r (in other words, r is
not a member of Q(7)).

Such a change could be represented as the transition from a partition that
includes all and only those propositions in each of Q(7), Q(j) and Q(k)—
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Figure 8: Alternative conceptual resources: This represents an agent that has p among her
working hypothesis space, but has not yet taken in either q or r. We can model her coming to
take on q as the result of her ‘ruling out’ k.

which we can denote by Q({i, , k} )—to one that includes all and only those
propositions in each of Q(j) and Q(k)—which we denote by Q({j, k}). Thus,
such a change could be seen as an expansion in our agent’s conceptual re-
sources that can be represented by the elimination of one mathematical struc-
ture. You can look at the contrast in Figure 9 for illustration.

Note the analogy with our representation of changes in an agent’s ordinary;,
descriptive beliefs. When we model an agent as having ruled out a possibility,
it is because she comes to believe more propositions. Similarly, we can model
our agent as ruling out a mathematical structure when she comes to take on
more propositions as being part of her hypothesis space.

If we want to be able to assign proposition-like objects not only to ‘pure’
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(b) Refining logical space. The transition from
{i,j,k} to {j, k} is used to stand for a transition from

Q({i,j,k}) to Q({j, k}).

Figure 9: Two ways of modeling one change in our agent’s cognitive state

mathematical beliefs, but to ‘mixed” ones as well, we can simply model an
agent’s cognitive state as a set of pairs (w, i),*> where w is a possibility and i
is a mathematical structure used to encode the conceptual resources we as-
cribe to an agent. Now suppose we represent an agents cognitive state by a
set of pairs H. We can read off from the set H which worlds are compatible
with our agent’s beliefs and which possible world propositions make up her
hypothesis space. A possible world proposition A will be in our agent’s hy-
pothesis space iff it is in Q(i) whenever i figures in a pair that is in H. A world
w will be compatible with her beliefs just in case w figures in some pair that is
in H.

To complete this sketch, we need to discharge the initial assumption that
there is a good assignment of sets of propositions to each mathematical struc-
ture. Here is how. For any mathematical structure and any physical system,
we can ask whether there is an isomorphism from the mathematical structure
and the physical system.** Any proposition (or the negation of a proposition)
of the form °S is a physical system isomorphic to M’ can be thought of as gen-
erated by M, as will any finite Boolean combination of such propositions. In
other words, the set of propositions assigned to a mathematical structure M
will be the largest collection of propositions A such that for any two worlds w

4 Cf. Gibbard 1990, 2003.
4 We can also ask whether there is a partial isomorphism, i.e. an isomorphism from a sub-
structure of the given structure to the given physical system.
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and w' in A, if a physical system in w is isomorphic to M, so is its counter-
part in w'. To take an example, recall our graph in Figure 2: it can be used to
generate the (true) proposition that the bridges of the city of Konigsberg are
isomorphic to it, the (false) proposition that the bridges of the city are not iso-
morphic to it, the (false) proposition that the bridges of Paris are isomorphic
to it, the proposition that the faucets and pipes of a given house are isomorphic
to it, and so on.**

We can thus use sets of subsets of I to represent what mathematical theories
our agent accepts. By assigning to an agent a set H c I as the ‘content’ of
her mathematical beliefs, we attribute to them the conceptual resources that
correspond to the intersection of those X; such that i € H. This means that we
can use proposition-like objects to represent our agent’s mathematical beliefs
even if to have a belief represented by a set of points H is not a matter of taking
a stance on what the world is like, but rather a matter of deploying certain
conceptual resources in theorizing.

A.2  Semantics

A further advantage of this representation is that it allows us to give an ade-
quate semantics for the language of mathematics.

To give a compositional semantics for a given language is to assigning in
a recursive fashion an abstract object to any well-formed sentence in the lan-
guage. On my view, the main constraint on this project is that these abstract
objects can be used to model the effect of an utterance of that sentence in a
conversation.*> So in order to give a semantics for the language of mathemat-
ics, we need to answer three questions.

(Q1)  What is the effect of an utterance of any such sentence in a conversa-
tion?
(Q2)  What objects can be used to characterize the effects of utterancess in

a conversation?

(Q3) How can we assign the relevant objects to well-formed sentences of
the language in a recursive fashion?

I will answer each question in turn. Before I do that, I want to sketch a well-
known abstract model of conversation. This will set the stage for what fol-
lows.*®

4 Alternatively: it can be used to generate the proposition consisting of those worlds in

which the bridges of Konigsberg are isomorphic to the graph in Figure 2, etc.
For extended discussion, see Pérez Carballo forthcoming.
Cf. Lewis 1979b; Stalnaker 1973.
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Think of a conversation as an activity whose purpose is to induce changes
in the mental states of the participants. Each stage in the conversation can be
characterized by the conversational score, which represents the states of mind
that speakers take the participants to be in. The effect of an utterance can be
captured by a transition rule: a rule that tells us how the conversational score
should change if that utterance is accepted. The simplest example of this model
is one in which the conversational score is just a set of possible worlds. This set
contains those worlds that are taken to be live possibilities for the purpose of
the conversation: they are the worlds that represent what speakers take each
other to presuppose. To any sentence, we can assign a set of worlds. Uttering
any sentence will eliminate, from the conversational score, those worlds not
in the set of worlds assigned to that sentence.

The score can be more complex if there are different mental states we want
to keep track of. Suppose we have a language that can induce changes in what
speakers take each other to believe, and independently induce changes in what
speakers take each other to accept as a standard of precision (i.e. whatever
determines whether an utterance of a sentence like ‘France is hexagonal’ is
appropriate). We will then want to have a score containing two elements: a set
of worlds, and some abstract object that can encode information about what
standards of precision are relevant for the conversation.

We can now go back to our three questions. First: how does uttering a
sentence with mathematical vocabulary affect a conversation? On my view, to
accept a mathematical theory is to adopt a particular way of structuring logi-
cal space. The point of uttering a sentence with mathematical vocabulary is in
part to induce changes in what way of structuring logical space to accept for
the purposes of the conversation—in what the hypothesis space of the conver-
sation is.

What objects can be used to characterize the effect of these utterances?
For any mathematical language Z, we can use subsets of the collection of Z-
structures to characterize the hypothesis space of the conversation, using the
construction in §A.1. Since the dynamics of refining logical space can be rep-
resented by ‘narrowing down’ that set, we can simply assign a set of mathe-
matical structures to each sentence. Uttering that sentence will rule out the
mathematical structures that are not in its associated set.

Finally, how can we assign these objects to our sentences in a systematic
way? We can do so just as a descriptivist would. We can proceed by assigning
to each sentence in a mathematical language Z the set of Z-structures that are
models of the sentence. This assignment can be done much in the same way
that we do semantics for any first-order language.

It is slightly trickier to give a semantics for mixed sentences. But here is
one possible way to do so. Start by having our conversational score contain a
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set of pairs of the form (w, i) where w is a possible world and i is a mathemati-
cal structure. Plausibly we can assign a set of such pairs to each such sentence:
the set of (w, i) such that there is a (partial) isomorphism between the phys-
ical system—in w—that the sentence is about, and the structure i. Again, we
can piggy-back on a relatively straightforward assignment of a set of pairs of a
world and a mathematical structure to each mixed sentence. We can use these
sets in order to represent the effect that any mixed sentence will have on the
conversational score, roughly along the lines suggested by the construction in
SA.1.
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